How Close Are We—Really—to Building a Quantum Computer?


Olde Hornet

Well-Known Member

The race is on to build the world’s first meaningful quantum computer—one that can deliver the technology’s long-promised ability to help scientists do things like develop miraculous new materials, encrypt data with near-perfect security and accurately predict how Earth’s climate will change. Such a machine is likely more than a decade away, but IBM, Microsoft, Google, Intel and other tech heavyweights breathlessly tout each tiny, incremental step along the way. Most of these milestones involve packing ever more quantum bits, or qubits—the basic unit of information in a quantum computer—onto a processor chip. But the path to quantum computing involves far more than wrangling subatomic particles.

A qubit can represent a 0 and a 1 at the same time, a uniquely quantum phenomenon known in physics as a superposition. This lets qubits conduct vast numbers of calculations at once, massively increasing computing speed and capacity. But there are different types of qubits, and not all are created equal. In a programmable silicon quantum chip, for example, whether a bit is a 1 or a 0 depends on the direction its electron is spinning. Yet all qubits are notoriously fragile, with some requiring temperatures of about 20 millikelvins—250 times colder than deep space—to remain stable.
 
Back
Top